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Abstract—Object detection in remote sensing images is a detection in natural images thanks to their superior advan-

challenging task due to diversi ed orientation, complex bak-
ground, dense distribution and scale variation of objectsIn this
paper, we tackle this problem by proposing a novel multi-sck
multi-level feature enhanced network (M 2-Net) that integrates a
Feature Map Enhancement (FME) module and a Feature Fusion
Block (FFB) into Rotational RetinaNet. The FME module aims
to enhance the weak features by factorizing the convolutical
operation into two similar branches instead of one single kainch,
which helps to broaden receptive eld with less parametersThis
module is embedded into different layers in the backbone net
work to capture multi-scale semantics and location informaion
for detection. The FFB module is used to shorten the informabn
propagation path between low-level high-resolution feattes in
shallow layers and high-level semantic features in deep lays,
facilitating more effective feature fusion and object detetion
especially those with small sizes. Experimental results othree
benchmark datasets show that our method not only outperforns
many one-stage detectors but also achieves competitive acacy
with lower time cost than two-stage detectors.

Index Terms—Convolutional neural network (CNN), object de-
tection, feature fusion, remote sensing image, multi-scalanalysis

|I. INTRODUCTION

With the fast development of earth observation satellitb-te
nology, large amount of high-resolution optical remotesseg
images (RSIs) are more easily accessible every day, mal

tages in feature and image representation [2], [3]. CNN-
based frameworks for object detection can be roughly di/ide
into two categories: one-stage methods [4]-[7] and twgesta
methods [8]-[11]. One-stage methods such as YOLO [4],
YOLOV2 [5], SSD [6] and RetinaNet [7] consider object
detection as a regression problem and simultaneously pre-
dict object location and object class through an end-to-end
structure. Two-stage methods instead divide this task into
two steps. First, several regions of interests are produced
by a region proposal module, e.g. using select search [8] or
region proposal network (RPN) [10]. Then CNN is employed
to extract robust features from each region and make class-
speci ¢ predictions. Two-stage methods usually achievitelbe
accuracy but cost more time on prediction. Representatige t
stage detectors include R-CNN [8], Fast R-CNN [9] and Faster
R-CNN [10]. Moreover, improvement has also been made on
feature pyramid networks (FPN) [12] to support multi-scale
detection.

Although object detection methods have achieved very
promising performance in natural scene images, it is uistéal
to directly apply these detectors to optical RSIs, which are
captured with camera mounted on satellites or aeroplargs [1

kgﬁ. 1 shows some sample images for remote sensing object

ection. Compared with natural object detection, remote

it possible to better monitor and understand the earth'@bj(éensing object detection has the following unique chaieng

detection aims at simultaneously determining the locatiod
categories of the object of interests (e.g. plane, vehsti@)

in the images. It plays an important role in analyzing thesRSI

and promoting their usage in real-world applications sugh

urban planning, traf c management, map production, etc [1]

First, objects in RSIs are usually of small sizes with arbi-
trary orientations, scale variation and dense distrilmjtio
which signi cantly increase the dif culty of detection.
Second, remote sensing objects are prone to be over-

a

Recent years have witnessed the considerable achievement Whelmed by cluttered and complex backgrounds which
on deep convolutional neural networks (CNNs) based object Potentially introduce more false positives and noises.
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Third, RSIs are lack of contrast and texture details, which
are very discriminative clues for a detector, leading to
limited detection accuracy.

To address the above challenges, many researchers focus
on introducing domain-speci ¢ knowledge to existing net-

grant 16KJA520003. (Corresponding authors: Fengchaogidianfeng Lu.) works [14], [15]. One strategy is to embed rotation-aware
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Fig. 1. Sample images in remote sensing object detectione&ch scene, the green bounding box on the left image shoeleaed region, and the right
image shows the magni ed view of the region.

prior information into CNN models by introducing addi-with oriented response dilated convolution and fused featu
tional rotation-invariant layers or rotational region posal maps from different layers, enabling to detect objects at
networks [14], [16]-[18]. For example, Chengal.[18] added multiple scales in complex geospatial images. Driven by the
a rotation-invariant layer to R-CNN framework to enforcgower of FPN in multi-scale detection, a multi-scale raati
CNN feature representations to share close mapping befdense feature pyramid network was proposed in [30] for
and after rotation for object detection. Dimg al. developed ship detection where dense connections were used to enhance
a lightweight region of interest (Rol) transformer to reali propagation and encourage reuse of high-level semantical
the geometry transformation between horizontal Rols afeatures from different layers. Alternatively, image e
rotational ROIs, enabling network to extract rotationariant network (ICN) [31] combines image cascade and FPN to
region features for arbitrary-oriented object detectiv8]] allow extracting features at different levels and scalesitéie-

Furthermore, feature enhancement is also investigatedmerged single-shot detection (FMSSD) [15] leverages an
boost the detection performance, among which attentiothmeatrous spatial feature pyramid (ASFP) to pass the semantic
anism [20], [21] and feature fusion [22]-[26] are vastljeatures from a high level to a low level, in which atrous
explored. Attention mechanism is based on the fact that humeonvolutions with multiple rates were adopted to enlarge th
brain tends to put more concentration on a certain criticegceptive eld. In [28], Zhanget al. proposed a context-aware
region when processing a large amount of perceived infornggtection network (CAD-Net) to integrate scene-level glob
tion. As for detection in RSls, attention is helpful to guitte semantics and object-level local contexts of objects foremo
network to focus on prominent regions [27], [28]. Based ogonsideration of low-contrast objects. SCRDet [25] emptby
Faster R-CNN, multi-scale spatial and channel-wise dtient a sampling fusion network, which combines feature fusion
mechanism [29] was proposed to make the detector pay mwfigh effective anchor sampling for improved sensitivity to
attention to foreground regions and overcome the in uerfce 8mall objects. Moreover, fast detection based on lighgivei
the complex background, facilitating precise localizatio backbones is also studied [17], [32].

Feature fusion exploits the context information for detect  In this paper, we propose M ulti-scaleM ulti-level feature
by combining the power of low-resolution high-level feasr enhancedNetwork (M 2-Net), to boost remote sensing object
from deeper layers with high-resolution low-level featuredetection. As shown in Fig. 2, it is a one-stage network and
from shallow layers. As a result, the produced features arderits from Rotation RetinaNet (RetinaNet-R) [33]. Two
enriched and enhanced, especially for small objects or aditional modules, i.e., Feature Map Enhancement module
cluded objects [15], [28]. Liet al. [24] enhanced YOLOv2 (FME) and Feature Fusion Block (FFB) are introduced to



Fig. 2. The architecture ofl 2-Net. This network has two additional module named featusp ranhancement module (FME) and feature fusion block
(FFB). FME is embedded between backbone and feature pyraetidork, which aims at enhancing the weak features from #wkliione. FFB is set after
the feature pyramid network for the purpose of getting ma®ueate location and semantic information from the backbon

encourage multi-scale multi-level feature enhancement faherex, andy, are the coordinates of the center of the anchor
more consideration of the unique characteristics of RS®x andx’ and y0 are the coordinates of the centre of the
in uencing robust detection. The FME module is embeddegredicted box, likewise for other parameters.

into different layers to enhance the weak features from theDue to challenges of objects in RSIs, such as smaller size,
backbone network, so as to selectively integrate multiescsscale variation and lower contrast, etc., RetinaNet-R aain n
features of different semantics and localization infoiorat be directly applied for remote sensing object detection. To
FFB module aims to simultaneously take better advantagestlis end, we propose to embed FME and FFB modules into
low-level texture features for accurate localization anmghh RetinaNet-R, aiming to introduce domain-speci ¢ knowledg
level semantic features for classi cation via a bottom-wgihp of geospatial objects for enhanced feature representstias
augmentation. Experimental results on the DOTA [13], NWPW improve detection.

VHR-10 [18] and UCAS-AOD [34] datasets demonstrate the Feature Map Enhancement (FME)

effectiveness and generalization capability of the prepos . o
9 P y preg RSIs suffer from feature size variation and lack of con-

method while fast detectpn speeq can be achieved. . tirast and texture details, which requires the backbone to be
The rest of the paper is organized as follows. Section ]|

: . equipped with strong feature extraction ability. Gengrdte
describes the proposed 2-Net and analyzes its advantage quipp ; g X bt engt
. : . . : eature extraction ability of backbone can be improved by
in remote sensing object detection. Section Ill presengs t

. ) increasing the width or depth. As we know, backbone such as
experimental results on three widely-used datasets.@ebti . . .
. ResNet [2] uses pooling layers to reduce the resolutionchvhi
concludes the paper with future work.

makes the deep layers get more semantic features and promote
the classi cation. With the increasing of the depth or layer
the spatial resolution of the feature map decreases, hingder

In this section, we describe in detail the propogdd’- capacity of predicting the locations of objects in RSls,eesp
Net, including its overall architecture, additive featurmp Cially for small objects. Therefore, it is not reasonableatiul

enhancement, feature fusion module and loss functiomgettimore layers for enhanced feature representation. Alteeipt
Inception Network [35] pointed out that the feature exti@tt

capacity can also be strengthened by broadening the network
through putting more branches in the same layer.

Fig. 2 shows the overall structure ® 2-Net. Inherited  To this end, inspired by ACNet [36], an FME module is
from RetinaNet-R, it contains a backbone network, a featuggnstructed to more effectively capture the location ototsj,
pyramid network as well as a classi cation and regressiggs shown in Fig. 3. It consists of two similar branches. In the
subnetwork. In order to achieve rotation invariant detcti |eft branch, al 1 convolution layer is used to reduce the
ve parametersX, y, w, h, ) are used to represent arbitrarythannels and parameters. The® &8 convolution layer is used
oriented rectangle, whese y, w, h respectively indicates the to learn more non-linear relations and broaden the reaeptiv
center coordinates of ground truth box, the width and thg|d. Meanwhile we factorize th& 3 convolution operation
height. An angular offset is added to the regression subnigkg a1 3layer and 8 1 layer for keeping receptive eld as
and the bounding box is de ned as follows: well as decreasing inference time. The right branch shaees t
o= (X Xa)=Wa: ty = (y ya)=h similar architecture as th(_e left branch bl_Jt_ reverses themro
X a/—Tar ty a/—a of 1 3and3 1 convolution layers. Additionally, a shortcut
log(w=wa); th = log(h=ha) connection is adopted to combine the original features and
= a also ease information propagation. In order to capturedfit
- (XO Xa)=Wa: {0 = ( 0 - (1) scales of semantics and location information, we embed FME
= a)=Wa, ly = y ya)_ha i i

0 0 0 to C4 and C5 layers of backbone ResNet, as shown in Fig. 2.
= log(w =wa); t, = log(h =ha) Moreover, instead of RelLU, we choose Gaussian Error

0

= a Linear Unit (GELU) [37] as an activation function considegi

[I. PROPOSEDM 2 NET

A. Overview of the Proposed Network
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Fig. 4. The architecture of FFB. It comprises of two conviolutlayers,
respectively aiming to reduce the size and adjust the dimers of feature
maps.
—_— .
low-level localization information is fused with the hidével
g - semantic information for more effective object detection.

D. Loss Function

Fig. 3. The architecture of FME. The same as RetinaNet-R} 2-Net uses a multi-task focal

loss to balance positive and negative samples de ned as

its powerful capacity of approximate complicated funcsion X X X

. o : 1 0 0 2
and better interpretability. Mathematically, GELU can g a L = N t, Lreg( njs nj)+ N Las(pn;tn) (3)
proximated with n=1 j2 n=1

f(x)=0:5x(1+ tam[p 2= (x +0:044715%)]) (2) Where =(x;y;w;h; ), Nrepresents the number of anchors.
The regression losk g is a smoothlL ; loss measuring0 the
differences between ground-truth; and predicted one,; .

C. Feature Fusion Block (FFB) The focal losd. ¢s is used for classi cation. Hyper-parameters

Compared with large image size, e3200 30000r more, 1 aqd 2 bglgnce these two losses. Both of them are set to
1 during training.

the sizes of objects in remote sensing image are usually véry
small, in many cases only covering less than 15 pixels. It I1l. EXPERIMENTS
is known that the feature maps in deeper layers respondy this section, we compare the proposkd2-Net with
to the high-level semantic signals of entire objects whilgeyeral state-of-the-art detectors, including both dagesand
feature maps in shallow layers are related with low-levglyo-stage methods, on both oriented bounding box (OBB) task
localization signals. The long path from shallow layers tgnd horizontal bounding box (HBB) task to demonstrate the
deep features weakens and potentially vanishes the aecugglvantages of our method. The performance of the competing
localization information of these small targets, signity  getectors are extracted from the results reported in thygnaiii
reducing detection accuracy. This issue can be overcome iher. Since the dataset and experimental setting in these p
bottom-up path augmentation as in PANet [38] which shorteggrs and ours are exactly the same, the results are comparabl
the information propagation path between deep layers and _ )
shallow layers. A. Experimental Setting

Inspired by PANet [38], we introduce feature fusion block 1) Dataset: Three datasets were used for evaluation, includ-
(FFB) into detection network, shown in Fig. 4. TRe layer ing DOTA [13], NWPU VHR-10 [18] and UCAS-AOD [34].
of FFB is the same as thid3 layer of FPN in the original DOTA contains 2806 aerial images with sizes ranging from
RetinaNet. Each feature map rst goes through a3 3 800 800to 4000 4000pixels. The whole dataset includes
convolution layer with stride 2, yielding half-size feagunap. 15 categories of objects and 188,282 instances in total. The
Then each element of feature midp.; and the down-sampled NWPU VHR-10 contains 800 aerial images, where 650 of
map are added through element-wise addition. Subsequertthgm are labeled, covering 10 different categories, all lothv
the P11 layer is generated by & 3 convolution layer after are included in DOTA. UCAS-AOD contains 1,510 aerial
element-wise addition. Same as FME, all convolution layemmages with approximate size df000 100Q It contains
are followed by a GELU. As shown in Fig. 2, tl layer of 14,596 instances of planes and cars. Both classes are also
FFB comes from th€; layer of ResNet where high-resolutionincluded in DOTA. The training set and testing set of DOTA,
information exists. Th&l4 andN5 layers of FPN contain more NWPU VHR-10 and UCAS-AOD are the same as reported
high-level semantic information. With the FFB module, thén [33], [18] and [13].

wherex is the input.



TAB

LE I

RESULT COMPARISON OFOBB TASK ON DOTA DATASET. THE SHORT NAMES ARE DEFINED AS PL-PLANE, BD-BASEBALL DIAMOND, BR-BRIDGE,

GTF-GROUND FIELD TRACK, SV-SMALL VEHICLE , LV-L ARGE VEHICLE, S

H-SHIP, TC-TENNIS COURT, BC-BASKETBALL COURT, ST-STORAGE TANK,

SBF-SOCCERBALL FIELD, RA-ROUNDABOUT, HA-HARBOR, SP-SWIMMING POOL, HC-HELICOPTER THE TOP TWO VALUES ARE HIGHLIGHTED IN
RED AND BLUE.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP (%)

Two-stage methods

R-FCN [11] 37.80 38.21 3.64 37.26 6.74 2.60 5.59 2285 46.936.06 33.37 47.15 10.60 25.19 17.96 26.79

FR-O [13] 79.09 69.12 17.17 63.49 3420 37.16 36.20 89.19 6069. 58.96  49.4 5252 46.69 44.80 46.30 52.93

ICN [31] 81.40 7430 47.70 7030 6490 67.80 70.00 90.80 (¥9.178.20 53.60 62.90 67.00 64.20 50.20 68.20

Rol-Transformer [19]  88.64 78.52 43.44 7592 68.81 73.68 83.59 90.74 77.27 8146 58.39 53.54 62.83 5893 47.67 69.56

CAD-Net [28] 87.80 8240 49.40 7350 71.10 6350 76.70 90.90 79.20 73.30 4840 60.90 62.00 67.00 62.20 69.90

SCRDet [25] 89.98 80.65 52.09 68.36 68.36 60.32 7241 90.85 87.94  86.86 65.02 66.68 66.25 68.24 65.21 72.61

One-stage methods

SSD [6] 39.83 9.09 0.64 13.18 0.26 0.39 1.11 16.24  27.57 9.237.162  9.09 3.03 1.05 1.01 10.59

YOLOV2 [5] 39.57 20.29 36.58 2342 8.85 2.09 4.82 4434  38.2834.65 16.02 37.62 47.23 2519 7.45 21.39

Axis-Learning [39] 79.53 77.15 38.59 61.15 67.53 70.49 (6.3 89.66 79.07 83.53 47.27 61.01 56.28 66.06  36.05 65.98

RetinaNet-R [33] 88.92 67.67 3355 56.83 66.11 73.28 75.280.87 73.95 75.07 43.77 56.72 51.05 5586 21.46 62.02

M 2-Net 89.01 80.02 40.12 6823 71.03 77.32 78.01 90.82 78.05 77.33 58.02 62.19 6555 6132 56.32 70.22

TABLE Il
RESULT COMPARISON OFHBB TASK ON DOTA DATASET. THE TOP TWO VALUES ARE HIGHLIGHTED INRED AND BLUE.

Method PL BD BR GTF SV (Y SH TC BC ST SBF RA HA SP HC mAP (%)

Two-stage methods

R-FCN [11] 79.33 4426 36.58 5353 39.38 34.15 47.29 4566 .747 6584 3792 4423 4723 50.64 34.90 47.24

FR-H [13] 80.32 7755 3286 68.13 53.66 5249 50.04 90.41 055. 59.59 57.00 49.81 61.69 56.46 41.85 60.46

ICN [31] 90.00 77.70 53.40 73.30 73.50 65.00 7820 90.80 79.10 84.80 57.20 62.10 73.50 70.20 58.10 72.50

SCRDet [25] 90.18 81.88 5530 73.29 72.09 77.65 78.06 9091 8244 86.39 6453 63.45 7577 7821 60.11 75.35

One-stage methods

SSD [6] 4474 1121 622 6.91 2.00 1024 1134 1559 1256 9417. 1473 455 4.55 0.53 1.01 10.94

YOLOV2 [5] 76.90 33.87 2273 34.88 3873 32.02 5237 6165 .548 33.91 29.27 36.83 36.44 3826 11.61 39.20

FMSSD [15] 89.11 8151 48.22 67.94 69.23  73.56 76.87 90.782.67 73.33 52.65 67.52 72.37 80.57 60.15 72.43

M 2-Net 89.27 82.63 54.02 7232 7220 75.29 8355 90.85 84.36 70.85 59.29 62.38 7507 7196 53.79 73.19
TABLE Il Here,R; represents the recall for a given clgssf a detector,

RESULTS COMPARISON ONNWPU VHR-10AND UCAS-AODDATASETS.

P; (R;) denotes the precision for a given clgssvhen the

Method Training data Testing data mAP%) recall of this class iR; andC is the number of classes to be
Cheng et al. [18] NWPU VAR-I0 NWPU VHR-10  72.63 detected.
Iﬁ’\i[ﬁé{ N\\IIVVIF;LLJJ \\//EE-.:]L_% m\\//VVIF;LLJJ \\//:Fé'_llg 9955521 3) Network SettingsResNet-50 [2] is adopted as the back-
ICN [31] DOTA NWPU VHR-10  82.23 bone network for feature extraction. We trained the netveork
M 2-Net DOTA NWPU VHR-10 ~ 83.12 a Linux machine with the con guration of one NVIDIA Titan
Xia et al. [13] UCAS-AOD UCAS-AOD 89.41 XP GPU and 12GB memory. Stochastic gradient (SGD) with
ICN [31] UCAS-AOD UCAS-AOD 95.67 : oS :
M 2-Net UCAS-AOD UCAS-AOD 96.01 momentum is used for network optimization, whose weight
ICN [31] DOTA UCAS-AOD 86.13 decay and batch size are respectively given by 0.00001 and
M 2-Net DOTA UCAS-ACD 87.01 1. For DOTA and UCAS-AQOD datasets, the learning rate is
set to 0.001 and divided by 10 when the number of iterations
TABLE IV approaches 360,000 and 480,000 while the total iteratiens i
RUNNING TIME OF DIFFERENT METHODS ONDOTA DATASET. set to 600,000. In term of the NWPU VHR-10 dataset, the
Niethod APS)  Tme(min) learning rate is set to 0.0001.
REEﬁN[%f(])] gg:g? 11815 B. Comparison of Detection Accuracy
Rol-Transformer [19] ~ 69.56 1095 We rst report the detection accuracy on DOTA dataset,
Ret",\‘/la'}'i'; [33] 7‘:’)92'42'4 ggg which includes both OBB task and HBB task. As can be seen

2) Evaluation Metric: Following the PASCAL VOC 2012

in Table | and Table IlI, methods designed for natural scene
images such as FCN, SSD, YOLOVZ2, provide unsatis ed
results due to limited consideration of unique charadiess

of RSIs. Among all the compared one-stage methods, the

object detection task, we also use MAP to evaluate the doposedM 2-Net achieves the best detection accuracy by
tection performance of all methods. Mathematically, mAP @btaining70.226 mAP on OBB task and3.1% on HBB

de ned by

MAP =

z

1
.

Pj (Rj)dR;

(4)

task thanks to multi-scale feature learning ability endble
by FME and multi-level feature fusion ability powered by
FFB. Compared with the baseline RetinaNet-R, noticeable
improvement is made by the propoddd®-Net. Moreover, our
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Fig. 5. Visual results of the proposéd 2-Net on DOTA dataset.(a)-(d): HBB task, (e)-(h): OBB task.

detector wins baseline in almost all the categories. Thexmairrangement, arbitrary rotation and very small size. Thank
reason is that the FME module enhances the weak featuttes advantages of FFB in integrating multi-level features a
and FFB module helps to fuse low-level high-resolutionalifferent resolutions, proposed 2-Net can accurately detect
features and high-level semantic features. Additionadlyr their positions. The superior detection results furthenifye
detector fails to surpass SCRDet on both tasks. This is Isecathe effectiveness of proposed method in remote sensingtobje
SCRDet is a two-stage detector with RPN which is better detection.

producing rotational anchors, facilitating tting grouwruth. D. Comparison of Running Time

However, ourM 2-Net wins on those objects with small sizes )
Table IV shows the detection speed on DOTA dataset. We

and high density, such as SV, LV and SH. The main reaso(E BC ) q
is that they are usually very small in size and require mofe'©S¢ FR-O [13], RCNN [40], RetinaNet-R [33] and Rol-

Transformer [19] as the alternative methods for comparison

information for accurate location and classi cation, whican o ; _ _
be achieved through the proposed FME. In summary, tkqﬂgn&derlng their codes are publicly available. We ran all
dhe detectors on a Linux machine with one Titan Xp 12G

experiment evidently veri es the effectiveness of propgbs
xper! v y ven V profb GPU, two Intel Xeon E5-2620 CPUs and 64G memory. As

M 2-Net in RSIs detection. )
Table 11l shows the detection performance on NWPU VH oresented in the table, two-stage detectors use an exge sta
N to generate proposals, leading to the phenomena that

10 and UCAS-AOD datasets, which are respectively used ';_)

HBB task and OBB task. In this experiment, we test thfe -((j),tR'Zt(_:NNémd ROI(;Tra}S]si(;]rmEr COI.St mRucth mNorteRUme
detectors on two different training data settings, i.e.,TRO or detection. L.ompared wi € baseline RetinalNet-R, our

and NWPU VHR-10. As can be seen. our method is a|§89th0d cost slightly more time, but obtains a gainL6f78%

better than the alternatives in both settings, which corsr AP. The main reason is that we usela 3 convolutional

the superiority and generality of the proposed detector. ayer an_d a3 1 con_volutlonal layer to repla_lce a 3.
convolutional layer, which can help reduce the inferenceti

C. Visual results Overall, proposed detector is a time-ef ciency detectothwi

. . . _ competitive detection ability.
Fig. 5 visualizes the detection results on DOTA dataset.

Thanks to the FME module, the visual cues are enhancéd, Ablation study

enabling the detector to locate the objects in low contrastTable V shows the impact of each proposed component, i.e.,
scenarios, see Fig. 5(a) and Fig. 5(e). The remaining guré8/E and FFB, multi-scale (MS) settings and backbone in our
demonstrate the detection performance on objects withedepgpeline. All experiments were performed on DOTA dataset.



TABLE V
ABLATION STUDY OF COMPONENTS ONDOTA DATASET.

Baseline Backbone FME FFB MS mAP (%)@OBB mAP (%)@HBB

X ResNet-50 - - - 59.44 62.33
X ResNet-50 X - - 61.76 64.02
X ResNet-50 - X - 62.92 65.25
X ResNet-50 X X - 64.62 68.21
X ResNet-101 X X - 68.85 71.03
X ResNet-101 X X X 70.22 73.19

@ (b) © (d)

(e) ® (@) (h)
Fig. 6. Some typical failure predictions produced by ourhmodt (a)-(d): HBB task, (e)-(h): OBB task.

FME. This module aims to enhance the weak features frof®.5,0.6,0.8,1) to increase size diversity. With the hdlM§,
the backbone to help detect categories with small size$ hidpe mAP reaches 70.22% and 73.19% respectively.
density and low contrast. FME enables to extract multiesc

location information with larger receptive eld, yieldirggain )
of 2.32% and 1.69% respectively on OBB and HBB task. Although our method outperforms many detectors, there is

This shows that this module can signi cantly help the whol&0m for further exploration. In this section, we analysis t
network with improved performance. shortcomings of our detector by showing the typical failure

. . ases on DOTA dataset, given in Fig. 6. In RSls, objects
FFB. This module is a compensate module for the Fplﬁénd to be overwhelmed by complex background, which high

making the detector get more accurate location informatiqﬂ(ely introduces false positives and noises. As a reshi, t
Thanks to muIti-IeveI_ locational and semantic informatio etector is misled especially in very Iow—résolution ims;ge
F&ngrzgebayb';';?’l tgci)lmproved MAP on both OBB and HB y missing or falsely detecting the objects. For example, th
B ) _detector mistakes the embankment for a ship in Fig. 6(a) and
Backbone Backbone network plays an important role insig. 6(f) and falsely considers the vacant land as a baseball
object detection. Deeper backbone generally indicatese M@fiamond in Fig. 6(b) and Fig. 6(g). The detector fails to dete
capacity of feature extraction. For this reason, replacing the bridges contained in Fig. 6(c) and Fig. 6(h) and only
ResNet-50 with Res_,Net-101 allows our detector gaining%.23yetect parts of the bridge in Fig. 6(d) and Fig. 6(e). This
and 2.82% respectively on OBB and HBB task . result suggests that our detector should be limited in tiatc
MS. In training step, we resize the images at scales objects with high aspect ratios which is always a dif cultka

aIL. Failure cases analysis



IV. CONCLUSION [18]

In this paper, we have introduced a novel deep neural net-

work for remote sensing object detection. It contains aufieat [19
map enhancement module which enhances weak features in

backbone by broadening the network with very few additional

parameters, and a feature fusion block which fuses lowHleV&

features in shallow network and high-level features, mgkin
the detector more powerful of locating small objects. TH&ll
proposed method was evaluated on DOTA, NWPU VHR-10
and UCAS-AOD datasets. The experimental results show thzd]
our method has better capacity of RSIs detection, with highe
computational ef ciency. In the future, we will extend our
method to more discriminative deep models for ne-grainegds]
object detection.
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