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Abstract—Object detection in remote sensing images is a
challenging task due to diversi�ed orientation, complex back-
ground, dense distribution and scale variation of objects.In this
paper, we tackle this problem by proposing a novel multi-scale
multi-level feature enhanced network (M 2-Net) that integrates a
Feature Map Enhancement (FME) module and a Feature Fusion
Block (FFB) into Rotational RetinaNet. The FME module aims
to enhance the weak features by factorizing the convolutional
operation into two similar branches instead of one single branch,
which helps to broaden receptive �eld with less parameters.This
module is embedded into different layers in the backbone net-
work to capture multi-scale semantics and location information
for detection. The FFB module is used to shorten the information
propagation path between low-level high-resolution features in
shallow layers and high-level semantic features in deep layers,
facilitating more effective feature fusion and object detection
especially those with small sizes. Experimental results onthree
benchmark datasets show that our method not only outperforms
many one-stage detectors but also achieves competitive accuracy
with lower time cost than two-stage detectors.

Index Terms—Convolutional neural network (CNN), object de-
tection, feature fusion, remote sensing image, multi-scale analysis

I. I NTRODUCTION

With the fast development of earth observation satellite tech-
nology, large amount of high-resolution optical remote sensing
images (RSIs) are more easily accessible every day, making
it possible to better monitor and understand the earth. Object
detection aims at simultaneously determining the locationand
categories of the object of interests (e.g. plane, vehicle,ship)
in the images. It plays an important role in analyzing the RSIs
and promoting their usage in real-world applications such as
urban planning, traf�c management, map production, etc [1].

Recent years have witnessed the considerable achievement
on deep convolutional neural networks (CNNs) based object
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detection in natural images thanks to their superior advan-
tages in feature and image representation [2], [3]. CNN-
based frameworks for object detection can be roughly divided
into two categories: one-stage methods [4]–[7] and two-stage
methods [8]–[11]. One-stage methods such as YOLO [4],
YOLOV2 [5], SSD [6] and RetinaNet [7] consider object
detection as a regression problem and simultaneously pre-
dict object location and object class through an end-to-end
structure. Two-stage methods instead divide this task into
two steps. First, several regions of interests are produced
by a region proposal module, e.g. using select search [8] or
region proposal network (RPN) [10]. Then CNN is employed
to extract robust features from each region and make class-
speci�c predictions. Two-stage methods usually achieve better
accuracy but cost more time on prediction. Representative two-
stage detectors include R-CNN [8], Fast R-CNN [9] and Faster
R-CNN [10]. Moreover, improvement has also been made on
feature pyramid networks (FPN) [12] to support multi-scale
detection.

Although object detection methods have achieved very
promising performance in natural scene images, it is unrealistic
to directly apply these detectors to optical RSIs, which are
captured with camera mounted on satellites or aeroplanes [13].
Fig. 1 shows some sample images for remote sensing object
detection. Compared with natural object detection, remote
sensing object detection has the following unique challenges:

� First, objects in RSIs are usually of small sizes with arbi-
trary orientations, scale variation and dense distribution,
which signi�cantly increase the dif�culty of detection.

� Second, remote sensing objects are prone to be over-
whelmed by cluttered and complex backgrounds which
potentially introduce more false positives and noises.

� Third, RSIs are lack of contrast and texture details, which
are very discriminative clues for a detector, leading to
limited detection accuracy.

To address the above challenges, many researchers focus
on introducing domain-speci�c knowledge to existing net-
works [14], [15]. One strategy is to embed rotation-aware
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Fig. 1. Sample images in remote sensing object detection. For each scene, the green bounding box on the left image shows a selected region, and the right
image shows the magni�ed view of the region.

prior information into CNN models by introducing addi-
tional rotation-invariant layers or rotational region proposal
networks [14], [16]–[18]. For example, Chenget al. [18] added
a rotation-invariant layer to R-CNN framework to enforce
CNN feature representations to share close mapping before
and after rotation for object detection. Dinget al. developed
a lightweight region of interest (RoI) transformer to realize
the geometry transformation between horizontal RoIs and
rotational ROIs, enabling network to extract rotation-invariant
region features for arbitrary-oriented object detection [19].

Furthermore, feature enhancement is also investigated to
boost the detection performance, among which attention mech-
anism [20], [21] and feature fusion [22]–[26] are vastly
explored. Attention mechanism is based on the fact that human
brain tends to put more concentration on a certain critical
region when processing a large amount of perceived informa-
tion. As for detection in RSIs, attention is helpful to guidethe
network to focus on prominent regions [27], [28]. Based on
Faster R-CNN, multi-scale spatial and channel-wise attention
mechanism [29] was proposed to make the detector pay more
attention to foreground regions and overcome the in�uence of
the complex background, facilitating precise localization.

Feature fusion exploits the context information for detection
by combining the power of low-resolution high-level features
from deeper layers with high-resolution low-level features
from shallow layers. As a result, the produced features are
enriched and enhanced, especially for small objects or oc-
cluded objects [15], [28]. Liuet al. [24] enhanced YOLOv2

with oriented response dilated convolution and fused feature
maps from different layers, enabling to detect objects at
multiple scales in complex geospatial images. Driven by the
power of FPN in multi-scale detection, a multi-scale rotation
dense feature pyramid network was proposed in [30] for
ship detection where dense connections were used to enhance
propagation and encourage reuse of high-level semantical
features from different layers. Alternatively, image cascade
network (ICN) [31] combines image cascade and FPN to
allow extracting features at different levels and scales. Feature-
merged single-shot detection (FMSSD) [15] leverages an
atrous spatial feature pyramid (ASFP) to pass the semantic
features from a high level to a low level, in which atrous
convolutions with multiple rates were adopted to enlarge the
receptive �eld. In [28], Zhanget al. proposed a context-aware
detection network (CAD-Net) to integrate scene-level global
semantics and object-level local contexts of objects for more
consideration of low-contrast objects. SCRDet [25] employed
a sampling fusion network, which combines feature fusion
with effective anchor sampling for improved sensitivity to
small objects. Moreover, fast detection based on light-weight
backbones is also studied [17], [32].

In this paper, we propose aMulti-scaleMulti-level feature
enhancedNetwork (M 2-Net), to boost remote sensing object
detection. As shown in Fig. 2, it is a one-stage network and
inherits from Rotation RetinaNet (RetinaNet-R) [33]. Two
additional modules, i.e., Feature Map Enhancement module
(FME) and Feature Fusion Block (FFB) are introduced to
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Fig. 2. The architecture ofM 2 -Net. This network has two additional module named feature map enhancement module (FME) and feature fusion block
(FFB). FME is embedded between backbone and feature pyramidnetwork, which aims at enhancing the weak features from the backbone. FFB is set after
the feature pyramid network for the purpose of getting more accurate location and semantic information from the backbone.

encourage multi-scale multi-level feature enhancement for
more consideration of the unique characteristics of RSIs
in�uencing robust detection. The FME module is embedded
into different layers to enhance the weak features from the
backbone network, so as to selectively integrate multi-scale
features of different semantics and localization information.
FFB module aims to simultaneously take better advantages of
low-level texture features for accurate localization and high-
level semantic features for classi�cation via a bottom-up path
augmentation. Experimental results on the DOTA [13], NWPU
VHR-10 [18] and UCAS-AOD [34] datasets demonstrate the
effectiveness and generalization capability of the proposed
method while fast detection speed can be achieved.

The rest of the paper is organized as follows. Section II
describes the proposedM 2-Net and analyzes its advantages
in remote sensing object detection. Section III presents the
experimental results on three widely-used datasets. Section IV
concludes the paper with future work.

II. PROPOSEDM 2� NET

In this section, we describe in detail the proposedM 2-
Net, including its overall architecture, additive featuremap
enhancement, feature fusion module and loss function setting.

A. Overview of the Proposed Network

Fig. 2 shows the overall structure ofM 2-Net. Inherited
from RetinaNet-R, it contains a backbone network, a feature
pyramid network as well as a classi�cation and regression
subnetwork. In order to achieve rotation invariant detection,
�ve parameters (x, y, w, h, � ) are used to represent arbitrary-
oriented rectangle, wherex, y, w, h respectively indicates the
center coordinates of ground truth box, the width and the
height. An angular offset is added to the regression subnet,
and the bounding box is de�ned as follows:

tx = ( x � xa)=wa ; ty = ( y � ya)=ha

tw = log(w=wa ); th = log(h=ha)

t � = � � � a

t
0
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t
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0
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t
0
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0
� � a

(1)

wherexa andya are the coordinates of the center of the anchor
box andx

0
and y

0
are the coordinates of the centre of the

predicted box, likewise for other parameters.
Due to challenges of objects in RSIs, such as smaller size,

scale variation and lower contrast, etc., RetinaNet-R can not
be directly applied for remote sensing object detection. To
this end, we propose to embed FME and FFB modules into
RetinaNet-R, aiming to introduce domain-speci�c knowledge
of geospatial objects for enhanced feature representationso as
to improve detection.

B. Feature Map Enhancement (FME)

RSIs suffer from feature size variation and lack of con-
trast and texture details, which requires the backbone to be
equipped with strong feature extraction ability. Generally, the
feature extraction ability of backbone can be improved by
increasing the width or depth. As we know, backbone such as
ResNet [2] uses pooling layers to reduce the resolution, which
makes the deep layers get more semantic features and promote
the classi�cation. With the increasing of the depth or layers,
the spatial resolution of the feature map decreases, hindering
capacity of predicting the locations of objects in RSIs, espe-
cially for small objects. Therefore, it is not reasonable toadd
more layers for enhanced feature representation. Alternatively,
Inception Network [35] pointed out that the feature extraction
capacity can also be strengthened by broadening the network
through putting more branches in the same layer.

To this end, inspired by ACNet [36], an FME module is
constructed to more effectively capture the location of objects,
as shown in Fig. 3. It consists of two similar branches. In the
left branch, a1 � 1 convolution layer is used to reduce the
channels and parameters. Then a3� 3 convolution layer is used
to learn more non-linear relations and broaden the receptive
�eld. Meanwhile we factorize the3� 3 convolution operation
into a1� 3 layer and a3� 1 layer for keeping receptive �eld as
well as decreasing inference time. The right branch shares the
similar architecture as the left branch but reverses the group
of 1� 3 and3� 1 convolution layers. Additionally, a shortcut
connection is adopted to combine the original features and
also ease information propagation. In order to capture different
scales of semantics and location information, we embed FME
to C4 and C5 layers of backbone ResNet, as shown in Fig. 2.

Moreover, instead of ReLU, we choose Gaussian Error
Linear Unit (GELU) [37] as an activation function considering
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Fig. 3. The architecture of FME.

its powerful capacity of approximate complicated functions
and better interpretability. Mathematically, GELU can be ap-
proximated with

f (x) = 0 :5x(1 + tanh[
p

2=� (x + 0 :044715x3)]) (2)

wherex is the input.

C. Feature Fusion Block (FFB)

Compared with large image size, e.g.3000� 3000or more,
the sizes of objects in remote sensing image are usually very
small, in many cases only covering less than 15 pixels. It
is known that the feature maps in deeper layers respond
to the high-level semantic signals of entire objects while
feature maps in shallow layers are related with low-level
localization signals. The long path from shallow layers to
deep features weakens and potentially vanishes the accurate
localization information of these small targets, signi�cantly
reducing detection accuracy. This issue can be overcome by
bottom-up path augmentation as in PANet [38] which shortens
the information propagation path between deep layers and
shallow layers.

Inspired by PANet [38], we introduce feature fusion block
(FFB) into detection network, shown in Fig. 4. TheP3 layer
of FFB is the same as theN3 layer of FPN in the original
RetinaNet. Each feature mapPi �rst goes through a3 � 3
convolution layer with stride 2, yielding half-size feature map.
Then each element of feature mapN i +1 and the down-sampled
map are added through element-wise addition. Subsequently,
the Pi +1 layer is generated by a3 � 3 convolution layer after
element-wise addition. Same as FME, all convolution layers
are followed by a GELU. As shown in Fig. 2, theP3 layer of
FFB comes from theC3 layer of ResNet where high-resolution
information exists. TheN4 andN5 layers of FPN contain more
high-level semantic information. With the FFB module, the

+
Ni+1

Pi+1

Pi

Fig. 4. The architecture of FFB. It comprises of two convolution layers,
respectively aiming to reduce the size and adjust the dimension of of feature
maps.

low-level localization information is fused with the high-level
semantic information for more effective object detection.

D. Loss Function

The same as RetinaNet-R,M 2-Net uses a multi-task focal
loss to balance positive and negative samples de�ned as

L =
� 1

N

NX

n =1

t
0

n

X

j 2 �

L reg (�
0

nj ; � nj ) +
� 2

N

NX

n =1

L cls (pn ; tn ) (3)

where� = ( x; y; w; h; � ), N represents the number of anchors.
The regression lossL reg is a smoothL 1 loss measuring the
differences between ground-truth� nj and predicted one�

0

nj .
The focal lossL cls is used for classi�cation. Hyper-parameters
� 1 and � 2 balance these two losses. Both of them are set to
1 during training.

III. E XPERIMENTS

In this section, we compare the proposedM 2-Net with
several state-of-the-art detectors, including both one-stage and
two-stage methods, on both oriented bounding box (OBB) task
and horizontal bounding box (HBB) task to demonstrate the
advantages of our method. The performance of the competing
detectors are extracted from the results reported in the original
paper. Since the dataset and experimental setting in those pa-
pers and ours are exactly the same, the results are comparable.

A. Experimental Setting

1) Dataset:Three datasets were used for evaluation, includ-
ing DOTA [13], NWPU VHR-10 [18] and UCAS-AOD [34].
DOTA contains 2806 aerial images with sizes ranging from
800� 800 to 4000� 4000pixels. The whole dataset includes
15 categories of objects and 188,282 instances in total. The
NWPU VHR-10 contains 800 aerial images, where 650 of
them are labeled, covering 10 different categories, all of which
are included in DOTA. UCAS-AOD contains 1,510 aerial
images with approximate size of1000� 1000. It contains
14,596 instances of planes and cars. Both classes are also
included in DOTA. The training set and testing set of DOTA,
NWPU VHR-10 and UCAS-AOD are the same as reported
in [33], [18] and [13].



TABLE I
RESULT COMPARISON OFOBB TASK ON DOTA DATASET. THE SHORT NAMES ARE DEFINED AS: PL-PLANE , BD-BASEBALL DIAMOND , BR-BRIDGE,

GTF-GROUND FIELD TRACK, SV-SMALL VEHICLE , LV-L ARGE VEHICLE, SH-SHIP, TC-TENNIS COURT, BC-BASKETBALL COURT, ST-STORAGE TANK,
SBF-SOCCER-BALL FIELD , RA-ROUNDABOUT, HA-HARBOR, SP-SWIMMING POOL, HC-HELICOPTER. THE TOP TWO VALUES ARE HIGHLIGHTED IN

RED AND BLUE.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP(%)
Two-stage methods
R-FCN [11] 37.80 38.21 3.64 37.26 6.74 2.60 5.59 22.85 46.93 66.04 33.37 47.15 10.60 25.19 17.96 26.79
FR-O [13] 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.4 52.52 46.69 44.80 46.30 52.93
ICN [31] 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20
RoI-Transformer [19] 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
CAD-Net [28] 87.80 82.40 49.40 73.50 71.10 63.50 76.70 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90
SCRDet [25] 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
One-stage methods
SSD [6] 39.83 9.09 0.64 13.18 0.26 0.39 1.11 16.24 27.57 9.23 27.16 9.09 3.03 1.05 1.01 10.59
YOLOV2 [5] 39.57 20.29 36.58 23.42 8.85 2.09 4.82 44.34 38.2534.65 16.02 37.62 47.23 25.19 7.45 21.39
Axis-Learning [39] 79.53 77.15 38.59 61.15 67.53 70.49 76.30 89.66 79.07 83.53 47.27 61.01 56.28 66.06 36.05 65.98
RetinaNet-R [33] 88.92 67.67 33.55 56.83 66.11 73.28 75.2490.87 73.95 75.07 43.77 56.72 51.05 55.86 21.46 62.02
M 2 -Net 89.01 80.02 40.12 68.23 71.03 77.32 78.01 90.82 78.05 77.33 58.02 62.19 65.55 61.32 56.32 70.22

TABLE II
RESULT COMPARISON OFHBB TASK ON DOTA DATASET. THE TOP TWO VALUES ARE HIGHLIGHTED INRED AND BLUE.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP(%)
Two-stage methods
R-FCN [11] 79.33 44.26 36.58 53.53 39.38 34.15 47.29 45.66 47.74 65.84 37.92 44.23 47.23 50.64 34.90 47.24
FR-H [13] 80.32 77.55 32.86 68.13 53.66 52.49 50.04 90.41 75.05 59.59 57.00 49.81 61.69 56.46 41.85 60.46
ICN [31] 90.00 77.70 53.40 73.30 73.50 65.00 78.20 90.80 79.10 84.80 57.20 62.10 73.50 70.20 58.10 72.50
SCRDet [25] 90.18 81.88 55.30 73.29 72.09 77.65 78.06 90.91 82.44 86.39 64.53 63.45 75.77 78.21 60.11 75.35
One-stage methods
SSD [6] 44.74 11.21 6.22 6.91 2.00 10.24 11.34 15.59 12.56 17.94 14.73 4.55 4.55 0.53 1.01 10.94
YOLOV2 [5] 76.90 33.87 22.73 34.88 38.73 32.02 52.37 61.65 48.54 33.91 29.27 36.83 36.44 38.26 11.61 39.20
FMSSD [15] 89.11 81.51 48.22 67.94 69.23 73.56 76.87 90.7182.67 73.33 52.65 67.52 72.37 80.57 60.15 72.43
M 2 -Net 89.27 82.63 54.02 72.32 72.20 75.29 83.55 90.85 84.36 70.85 59.29 62.38 75.07 71.96 53.79 73.19

TABLE III
RESULTS COMPARISON ONNWPU VHR-10AND UCAS-AOD DATASETS.

Method Training data Testing data mAP(%)
Cheng et al. [18] NWPU VHR-10 NWPU VHR-10 72.63

ICN [31] NWPU VHR-10 NWPU VHR-10 95.01
M 2-Net NWPU VHR-10 NWPU VHR-10 95.32
ICN [31] DOTA NWPU VHR-10 82.23
M 2-Net DOTA NWPU VHR-10 83.12

Xia et al. [13] UCAS-AOD UCAS-AOD 89.41
ICN [31] UCAS-AOD UCAS-AOD 95.67
M 2-Net UCAS-AOD UCAS-AOD 96.01
ICN [31] DOTA UCAS-AOD 86.13
M 2-Net DOTA UCAS-AOD 87.01

TABLE IV
RUNNING TIME OF DIFFERENT METHODS ONDOTA DATASET.

Method mAP(%) time(min)
FR-O [13] 52.93 1015

R2CNN [40] 60.67 1043
RoI-Transformer [19] 69.56 1095

RetinaNet-R [33] 59.44 480
M 2-Net 70.22 503

2) Evaluation Metric: Following the PASCAL VOC 2012
object detection task, we also use mAP to evaluate the de-
tection performance of all methods. Mathematically, mAP is
de�ned by

mAP =
1
C

CX

j =1

Z
Pj (Rj )dRj (4)

Here,Rj represents the recall for a given classj of a detector,
Pj (Rj ) denotes the precision for a given classj when the
recall of this class isRj andC is the number of classes to be
detected.

3) Network Settings:ResNet-50 [2] is adopted as the back-
bone network for feature extraction. We trained the networkon
a Linux machine with the con�guration of one NVIDIA Titan
XP GPU and 12GB memory. Stochastic gradient (SGD) with
momentum is used for network optimization, whose weight
decay and batch size are respectively given by 0.00001 and
1. For DOTA and UCAS-AOD datasets, the learning rate is
set to 0.001 and divided by 10 when the number of iterations
approaches 360,000 and 480,000 while the total iterations is
set to 600,000. In term of the NWPU VHR-10 dataset, the
learning rate is set to 0.0001.

B. Comparison of Detection Accuracy

We �rst report the detection accuracy on DOTA dataset,
which includes both OBB task and HBB task. As can be seen
in Table I and Table II, methods designed for natural scene
images such as FCN, SSD, YOLOV2, provide unsatis�ed
results due to limited consideration of unique characteristics
of RSIs. Among all the compared one-stage methods, the
proposedM 2-Net achieves the best detection accuracy by
obtaining 70.22% mAP on OBB task and73.19% on HBB
task thanks to multi-scale feature learning ability enabled
by FME and multi-level feature fusion ability powered by
FFB. Compared with the baseline RetinaNet-R, noticeable
improvement is made by the proposedM 2-Net. Moreover, our
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Fig. 5. Visual results of the proposedM 2 -Net on DOTA dataset.(a)-(d): HBB task, (e)-(h): OBB task.

detector wins baseline in almost all the categories. The main
reason is that the FME module enhances the weak features
and FFB module helps to fuse low-level high-resolutional
features and high-level semantic features. Additionally,our
detector fails to surpass SCRDet on both tasks. This is because
SCRDet is a two-stage detector with RPN which is better at
producing rotational anchors, facilitating �tting ground-truth.
However, ourM 2-Net wins on those objects with small sizes
and high density, such as SV, LV and SH. The main reason
is that they are usually very small in size and require more
information for accurate location and classi�cation, which can
be achieved through the proposed FME. In summary, this
experiment evidently veri�es the effectiveness of proposed
M 2-Net in RSIs detection.

Table III shows the detection performance on NWPU VHR-
10 and UCAS-AOD datasets, which are respectively used for
HBB task and OBB task. In this experiment, we test the
detectors on two different training data settings, i.e., DOTA
and NWPU VHR-10. As can be seen, our method is also
better than the alternatives in both settings, which con�rms
the superiority and generality of the proposed detector.

C. Visual results

Fig. 5 visualizes the detection results on DOTA dataset.
Thanks to the FME module, the visual cues are enhanced,
enabling the detector to locate the objects in low contrast
scenarios, see Fig. 5(a) and Fig. 5(e). The remaining �gures
demonstrate the detection performance on objects with dense

arrangement, arbitrary rotation and very small size. Thanks to
the advantages of FFB in integrating multi-level features at
different resolutions, proposedM 2-Net can accurately detect
their positions. The superior detection results further verify
the effectiveness of proposed method in remote sensing object
detection.

D. Comparison of Running Time

Table IV shows the detection speed on DOTA dataset. We
chose FR-O [13], R2CNN [40], RetinaNet-R [33] and RoI-
Transformer [19] as the alternative methods for comparison
considering their codes are publicly available. We ran all
the detectors on a Linux machine with one Titan Xp 12G
GPU, two Intel Xeon E5-2620 CPUs and 64G memory. As
presented in the table, two-stage detectors use an extra stage
RPN to generate proposals, leading to the phenomena that
FR-O, R2CNN and ROI-Transformer cost much more time
for detection. Compared with the baseline RetinaNet-R, our
method cost slightly more time, but obtains a gain of10:78%
mAP. The main reason is that we use a1 � 3 convolutional
layer and a3 � 1 convolutional layer to replace a3 � 3
convolutional layer, which can help reduce the inference time.
Overall, proposed detector is a time-ef�ciency detector with
competitive detection ability.

E. Ablation study

Table V shows the impact of each proposed component, i.e.,
FME and FFB, multi-scale (MS) settings and backbone in our
pipeline. All experiments were performed on DOTA dataset.



TABLE V
ABLATION STUDY OF COMPONENTS ONDOTA DATASET.

Baseline Backbone FME FFB MS mAP (%)@OBB mAP (%)@HBB
X ResNet-50 - - - 59.44 62.33
X ResNet-50 X - - 61.76 64.02
X ResNet-50 - X - 62.92 65.25
X ResNet-50 X X - 64.62 68.21
X ResNet-101 X X - 68.85 71.03
X ResNet-101 X X X 70.22 73.19

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Some typical failure predictions produced by our method. (a)-(d): HBB task, (e)-(h): OBB task.

FME. This module aims to enhance the weak features from
the backbone to help detect categories with small sizes, high
density and low contrast. FME enables to extract multi-scale
location information with larger receptive �eld, yieldinga gain
of 2.32% and 1.69% respectively on OBB and HBB task.
This shows that this module can signi�cantly help the whole
network with improved performance.

FFB. This module is a compensate module for the FPN,
making the detector get more accurate location information.
Thanks to multi-level locational and semantic information
powered by FFB, the improved mAP on both OBB and HBB
tasks are about 1.2%.

Backbone. Backbone network plays an important role in
object detection. Deeper backbone generally indicates more
capacity of feature extraction. For this reason, replacing
ResNet-50 with ResNet-101 allows our detector gaining 4.23%
and 2.82% respectively on OBB and HBB task .

MS. In training step, we resize the images at scales of

(0.5,0.6,0.8,1) to increase size diversity. With the help of MS,
the mAP reaches 70.22% and 73.19% respectively.

F. Failure cases analysis

Although our method outperforms many detectors, there is
room for further exploration. In this section, we analysis the
shortcomings of our detector by showing the typical failure
cases on DOTA dataset, given in Fig. 6. In RSIs, objects
tend to be overwhelmed by complex background, which high
likely introduces false positives and noises. As a result, the
detector is misled especially in very low-resolution images
by missing or falsely detecting the objects. For example, the
detector mistakes the embankment for a ship in Fig. 6(a) and
Fig. 6(f) and falsely considers the vacant land as a baseball
diamond in Fig. 6(b) and Fig. 6(g). The detector fails to detect
all the bridges contained in Fig. 6(c) and Fig. 6(h) and only
detect parts of the bridge in Fig. 6(d) and Fig. 6(e). This
result suggests that our detector should be limited in detecting
objects with high aspect ratios which is always a dif�cult task.



IV. CONCLUSION

In this paper, we have introduced a novel deep neural net-
work for remote sensing object detection. It contains a feature
map enhancement module which enhances weak features in
backbone by broadening the network with very few additional
parameters, and a feature fusion block which fuses low-level
features in shallow network and high-level features, making
the detector more powerful of locating small objects. The
proposed method was evaluated on DOTA, NWPU VHR-10
and UCAS-AOD datasets. The experimental results show that
our method has better capacity of RSIs detection, with higher
computational ef�ciency. In the future, we will extend our
method to more discriminative deep models for �ne-grained
object detection.
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