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Abstract— Image segmentation is the task of extracting the 

region of interest in images and is one of the main applications 

of computer vision in the medical domain. Like other computer 

vision tasks, deep learning is the main solution to image 

segmentation problems. Deep learning methods are data-

hungry and need a huge amount of data for training. On the 

other side, data shortage is always a problem, especially in the 

medical domain. Multi-task learning is a technique which helps 

the deep model to learn better representation from data 

distribution by introducing related auxiliary tasks. In this study, 

we investigate a research question to whether it is better to 

provide this auxiliary information as an input to the network, or 

is it better to use this task and design a multi-output network. 

Our findings suggest that however, the multi-output manner 

improves the overall performance, but the best result achieves 

when this extra information serves as auxiliary input 

information. 

Keywords— Deep Learning, Multi-task learning, image 

segmentation, computer vision. 

I. INTRODUCTION 

Image segmentation is one of the computer vision tasks 
which extracts the region of interest [1, 2]. Image 
segmentation has several applications in the medical domain, 
from organ segmentation to tumour segmentation in medical 
images [3, 4, 5]. Deep neural networks, outperform other 
techniques in this field and have become the number one 
solution to such problems [6]. The disadvantage of deep 
models is that they need lots of annotated data to learn from. 
Shortage of available annotated data is a big challenge in the 
medical area since data annotation is a tedious task which 
needs expertise [7]. The concept of multi-task learning is to 
introduce a related auxiliary task to the network and design the 
network to learn both tasks simultaneously [8]. This auxiliary 
task, not only brings extra data with itself, which is crucial for 
data shortage challenge, but also helps the network to 
generalize better and learns a more powerful representation 
from the data. Intuitively, the idea of multi-task learning is 
inspired by how humans use the knowledge acquired from 
learning other related tasks in the target task to increase the 
performance.  It is proven that when making a classifier to do 
another auxiliary task, the overall performance on the first task 
will improve [9]. In this study, our focus is on Multi Sclerosis 
(MS) lesion segmentation. Multiple Sclerosis is an 
autoimmune disorder which eats away the protective covering 
of the nerves, causing the appearance of lesions in the brain 
[10]. MS is also known as white matter disease since they only 
appear in the white matter. One way of using this information 
is to design a multi-task architecture in which not only the 

network is trained to segment the lesions, but also is trained to 
segment brain tissues as well. Brain tissue segmentation is the 
task of segmenting the brain MRI into brain tissues which are 
white matter, grey matter and CSF [11]. Following image 
shows both lesion segmentation and brain tissue segmentation 
tasks.

 

Fig. 1. Brain MR Image (Left), Brain Tissue Segmentation (Center), 

Multiple Sclerosis Lesion Segmentation (Right). 

In figure 1, the left image is the brain MRI, the middle 
image is the mask of brain tissues, and the image in the right 
is the mask of MS lesions in the brain.  

As mentioned before, since MS lesions only occur in the 
white matter, one way of using this information is to design 
multi-output network architecture, in which the network tries 
to segment both lesions and brain tissues at the same time. The 
intuition is that, when the network tries to find a mapping 
between input and two outputs, it also learns the correlation 
between white matter and the lesions. Another way of using 
such information is to feed this extra information directly to 
the network as input. In the latter form, the architecture of our 
deep model becomes a multi-input network. The aim of this 
study is to answer this research question, to whether to use 
extra information as an input or output? 

In the following, we first will discuss the background of 
multi-task learning. 

II. BACKGROUND 

Multi-task learning is known under different names such 
as joint-learning, learning to learn or learning with an 
auxiliary task, but in fact, when you train your network 
regarding more than one loss function, the network is 
considered as multi-task learning [12]. One of the main 
categorizations of multi-task learning divides the techniques 
into hard-parameter sharing [13] and soft parameter sharing 
[14] categories. 



A. Hard Parameter Sharing 

The most popular deep multi-task learning method is hard 
parameter sharing in which, hidden layers are shared between 
all tasks while having a task-specific output for each 
individual task. 

 

Fig. 2. Hard Parameter Sharing Architecture 

Two main architectures that were introduced in this 
category are Deep Relationship Network and Fully-Adaptive 
Feature Sharing. Deep Relationship Network was proposed by 
Long and Wang [15] and the main idea of is similar to hard 
parameter sharing, with having shared convolutional layers 
and task-specific fully connected layers. They also used prior 
matrices in the model to learn relationships between tasks. 
Fully-Adaptive Feature Sharing architecture starts with a Hard 
Sharing network and greedily groups similar tasks based on 
criteria. This network was introduced by Lu [16] in 2016. 

 

B. Soft Parameter Sharing 

 

Fig. 3. Soft Parameter Sharing Architecture 

Unlike Hard Parameter Sharing, in Soft Sharing, each task 
has its own model, but the parameters are trained in a way to 

be as similar as possible. In the case of having exactly the 
same parameters, the network is identical to Hard Sharing 
network. 

Cross-Stitch networks, introduced by Misra [17] in 2016 
is one of the main architectures in multi-task learning era. 
Cross-Stitch Networks are based upon Soft Parameter Sharing 
and have separate models for each task. The network is trained 
to learn how the knowledge of one task can leverage the other 
task by learning a linear combination of the output of previous 
layers which is called stitch module. Sluice was introduced in 
2017 [18] as an improvement to Cross-Stitch Networks. This 
model learns what layers should be shared as well as 
appropriate amount of sharing. Another novelty of this work 
is that the model is able to learn the appropriate relative 
weights of the different task losses. 

III. RELATED WORKS 

In recent years, multi-task learning has gained attention in 
medical domain [19]. Lots of multi-task convolutional neural 
networks have been proposed. One of the earliest works in this 
field was done by Moeskops et al in 2016 [20]. In their 
proposed architecture, they trained a single CNN for three 
different segmentation task. The network is trained to classify 
tasks prior to segmentation. In 2017 Wufeng Xue [21], 
proposed a fully convolutional deep multi task network for full 
cardiac left ventricle quantification. Proposed method consists 
of one CNN and two RNNs. Since our focus is on UNET-
based multi task learning architectures, we will discuss these 
methods in this area. 

In 2018, Liang Cao [22] proposed a UNET-based multi 
task network which is trained for segmentation and regression 
tasks. Segmentation part is trained to extract hippocampus, 
and regression part calculates Mini-mental state examination 
(MMSE) scores for subjects. 

Xulei Yang [23] also proposed a UNET-based multi task 
network which segments lesions in skin images as well as 
classification of skin lesion types. Since skin images are 2D, 
their proposed method is a 2D version of UNET. 

Toan Duc Bui [24] proposed a multi task UNET for 
Neonatal Brain Segmentation. This network has two paths, 
one path is for segmentation and the other one is designed to 
calculate regression. Segmentation path is a 3D-UNET, and 
the regression path is a convolutional network which shares 
the encoder part with segmentation path. Following image 
shows this architecture. 

 

 

Fig. 4. Multi-Task U-Net Architecture Propsed by Toan Duc Bui. 



Most of the multi-task architectures were designed so that 
it does segmentation in one path and classification or 
regression in another path. Our aim in this study is to propose 
a model for two different segmentation tasks. The main 
difference between our work and other methods, is that our 
loss function should be able to give good feedback to the 
network, so the model can segment both tasks efficiently. In 
the following section we discuss our proposed model. 

IV. PROPOSED METHOD 

In order to compare two strategies, we designed two 
different architectures; one for multi-input network and one 
for multi-output network. Since our target task is to segment 
brain lesions, both of our networks are based on 3D-UNET. 
UNET is a fully convolutional network which was designed 
for medical segmentation tasks [25]. In fully convolutional 
networks, last layer is also a convolutional layer which aims 
at reconstructing the image, by performing up-convolution. 
UNET has two paths, the first one is called contracting path 
which encodes the image, and the expanding path which 
decodes the image based on the features that it learned during 
encoding part. The model also uses skip connections [26], also 
known as residual connections, between the down-sampling 
and the up-sampling paths. These residual connections will 
provide local information and are proved to be helpful for the 
algorithm convergence. UNET, was first designed to deal with 
2D images, but later versions [27] were able to deal with 3D 
image sets as well. Figure 5 shows the UNET architecture.  

 

Fig. 5. U-Net Architecture 

For our multi-input architecture, we used multi-modal 3D-
UNET and passed the each brain tissue mask as a different 
modality to the network. On the other side for multi-output 
architecture, we combined hard-parameter sharing with 3D-
UNET, and designed a multi-output UNET. Following figure, 
shows the architecture for our multi-output proposed method. 

Figure 6 shows that all the layers are shared except for the 
last layer in expanding path. There are two different final 
layers each for one task.  

We also customized a loss function for our proposed 
architecture. Since both of our tasks are segmentation, we 
introduced a dice-coefficient based loss function. Our loss 
function has two parts; first term is weighted dice loss [28], 
and the second term is true positive rate [29]. The reason that 
we use weighted dice loss is the ability of this function at 
handling class imbalance [30]. 

 

 

 

Fig. 6. Our Proposed Multi-Output Architecture 

 

Weighted dice loss can be calculated using following 
equation: 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐷𝑖𝑐𝑒 (𝑀𝑅, 𝑀𝐴) = 1 − 2
𝑤|𝑀𝑅 ∩ 𝑀𝐴|

𝑤|𝑀𝑅| + |𝑀𝐴|
     

𝑊ℎ𝑒𝑟𝑒 𝑤 =  1 (𝑀𝑅)2⁄  

(1) 

 

The weight, in weighted dice loss, corrects the 
contribution of each label by the inverse of its volume [28]. 
By doing so, the correlation between region size and dice 
score will decrease. 

As mentioned before, dice loss is beneficial to our both 
tasks, but is not enough for our main task which is brain lesion 
segmentation. In the process of extracting lesions of the brain, 
there’s another metric that is important to us and that is true 
positive rate. TPR calculates the ratio of true positive voxels 
to the sum of true positive and false negative voxels. TPR is 
calculated using below equation: 

𝑇𝑃𝑅 (𝑀𝑅, 𝑀𝐴)

= 2
|𝑀𝑅 ∩ 𝑀𝐴|

|𝑀𝑅 ∩ 𝑀𝐴| + |𝑀𝑅 ∩ 𝑀𝐴
𝑐|

 

 

(2) 

Our customized loss function can be written as follows: 

 

𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐷𝑖𝑐𝑒 (𝑀𝑅, 𝑀𝐴)
+  𝑇𝑃𝑅 (𝑀𝑅, 𝑀𝐴) 

 
(3) 

V. DATA 

In this study we use MS Lesion Challenge dataset [31], 
which is publicly available. This dataset is longitudinal which 
means it has several MRI scans for each patient at different 
time points. This dataset is also multi-modal. Image modality 
in MRI is a particular setting in the acquisition of the image 
which results in a particular image appearance. Different 



modalities have different contrasts. Each modality focuses on 
one aspect of MRI scans [32], making them to have 
complementary information. Because of that, most 
researchers design their networks to be multi-modalities. MRI 
scans in MS dataset, are 3D volumes with the shape of 
181*217*181. Each subject has four different modalities 
including, flair, mprage, PD and T2. Below figure shows these 
modalities. 

 

Fig. 7. Dataset MRI Modalities: Flair (Left), PD (Second Left), T2 

(Second Right) and MPRAGE (Right). 

The training dataset consists of MRIs from five patients, 
four of which have four time point and one of them have five 
time points. Test dataset has scans of 14 patients with overall 
61 different subjects. Ground truth of the test dataset is not 
available and challenge participants can upload their 
segmentation masks onto the challenge website to calculate 
their proposed method performance. 

VI. METRICS 

In order to compare the results of our proposed method, 
we use dice coefficient overlap as our metric. Dice overlap is 
one the main metrics for comparison in medical domain, 
especially when the goal is predicting a binary mask. Dice 
overlap is the ratio of twice the number of overlapping voxels 
to the total number of voxels in each mask. 

 
𝐷𝑖𝑐𝑒 (𝑀𝑅 , 𝑀𝐴) = 2

|𝑀𝑅 ∩ 𝑀𝐴|

|𝑀𝑅| + |𝑀𝐴|
 (4) 

MR is the ground truth mask and MA is the mask 
generated by a particular algorithm. As you can see from 
the above equation, when MR and MA are identical, dice 
score will be one. 

VII. IMPLEMENTATION 

Since there is no available dataset with two different 
outputs, in this study we created our own proposed dataset. As 
mentioned before, we chose MS lesion challenge dataset, 
which contains brain MRIs along with lesion ground truth. In 
the second step, we provide brain tissue segmentation mask 
for each subject. We used Matlab’s SPM tool [33] for this aim. 
SPM’s brain tissue segmentation is based on image 
registration. Registration is the task of aligning two or more 
images [34]. In this tool, hundreds of brain images were 
aligned together to form a uniform brain scan. Then this 
referenced scan is used for tissue segmentation in new input 
MR images. 

 

Fig. 8. Process of Brain Tissue Segmentation Using SPM Tool. 

Figure 8 shows the process of brain tissue segmentation. 
SPM tool is designed for healthy brain scans, and since our 
original brain MRIs contain lesions, segmented brain structure 
is not accurate. To overcome this challenge, we proposed a 
strategy. In this strategy, we first train our network to predict 
lesions. Then we segment the scans into different tissues. Then 
we combine lesion parts with the white matter tissue to make 
sure that these lesions being segmented as white matter. 
Figure 9 shows this process. 

As shown in figure 9, first step is to roughly segment the 

lesion parts. For this aim we used a regular 3D-UNET. We 

trained a patch-wised 3D-UNET, with the patch size of [64, 

64, 64]. We used Adam [35] as our optimizer with the 

learning rate of 5e-4. We trained the network for 100 epochs, 

with a GTI 1050 Ti GPU. It is worth mentioning that we used 

a weighted dice loss function in this process. 
For our multi-input and multi-output architectures, we also 

trained a patch-wised 3D-UNET with hyper-parameters that 
were mentioned above. The only difference apart from the 
architecture, is the loss function that we used for these 
networks. 

VIII. EXPERIMENTS AND RESULTS 

In this section we report both quantitative and qualitative 
results of our proposed methods. To show that our method 
works better, we compare multi-task models with regular 3D-
UNET. 

 

 

Fig. 9. Brain Tissue Segemntation in the Presence of Lesions. 

A. Quantitative Results 

To compare the results of our proposed models, in the 
quantitative part, we report the dice score of the predicted 
mask both on the train set and test set. In order to report the 
results on the train set, we used 5-fold cross-validation and the 
final dice score is the average between dice metric on each 
fold. Note that, in each fold, we used MRI scans of a single 
patient to avoid the network from seeing similar subjects in 
the training phase. We report the dice score on the test set as 
well. As mentioned before, the ground truth of the test set is 
not available, and to get the performance of your method, one 



needs to upload the predicted masks onto the challenge 
website. Table I shows the result of different methods on the 
train set. 

TABLE I.  AVERAGE DICE SCORE OF CROSS VALIDATION OF THREE 

DIFFERENT ARCHITECTURES ON TRAIN DATASET 

 
Deep-Learning Method 

3D-UNET Multi-Input Multi-Output 

Dice score 58.2 65.6 62 

 

As shown in table I, both multi-input and multi-output, 
outperform the regular 3D-UNET model. You can also see 
that the performance of the multi-input model is higher than 
the multi-output network. We will explain these results in the 
discussion section. 

Table II shows the performance of three architectures on 
the test set.  

TABLE II.  DICE SCORE OF THREE DIFFERENT ARCHITECTURES ON 

TEST DATASET 

 

Deep-Learning Method 

3D-UNET Multi-Input Multi-Output 

Dice score 49.7 54.8 52.1 

 

Again like the train-set results, the best performance is 
achieved when we train the network in a multi-input manner. 

 

B. Qualitative Results 

In this section we show how different models, predict the 
segmentation mask. Figure 10 shows the prediction mask of 
different models on three different subjects.  

 

 

Fig. 10. Comparison of ground truth with output of different architectures. Red parts show the ground truth 
mask while green parts show the segmented area which is the output of each network. Each row is a different 

subject; Each column from left to right are: original 3D-Unet, Proposed Multi-Input 3D-Unet Architecture and 

Proposed Multi-Output 3D-Unet Architecture.

As you can see from figure 10, masks that were predicted 
by multi-task models, have lower false-positive voxels. This 
happens because the network implicitly learns that lesions 
only appear in the white matter. The picture also shows that 

the multi-input model is better at picking outline voxels. In 
other words, the multi-input model not only improves the false 
positive rate but also enhances the true positive rate. 



IX. DISCUSSION AND CONCLUSION 

In this study, we examined the power of auxiliary 
information to see whether it serves better as an input or 
output. Our findings show that even though multi-output 
architecture improves the performance, multi-input network, 
which uses the auxiliary information as an input to the 
network, achieves the best results. In this section, we explain 
why both multi-input and multi-output improve the 
performance. When we train our network in a multi-output 
manner, we are implicitly increasing the size of the dataset, 
which is proven to enhance the results. Another reason is since 
we are training the network regarding two loss functions, the 
network tries to learn a representation that suits both tasks 
well. In other words, features that can represent both tasks are 
chosen over features that are specific to only one task. This 
strategy assures that meaningful features have been selected 
so the algorithm generalizes better. In our case, when we train 
the network on both tasks, the network implicitly finds a 
mapping between white matter tissue and the location of 
lesions, which was more difficult for single-task models to 
understand. 

After explaining why multi-output models perform better 

than single models, now we want to discuss the power of 

multi-input networks.  

One of the reasons why multi-input performs better is that 

when we pass extra information to the network, the network 

uses this information as a fact but in the multi-output manner, 

not only the network tries to learn the relation between input 

and output, but also it should learn if there’s any correlation 

between different outputs.    
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