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Abstract—Plant phenotyping concerns the study of plant
traits resulted from their interaction with their environment.
Computer vision (CV) techniques represent promising, non-
invasive approaches for related tasks such as leaf counting,
defining leaf area, and tracking plant growth. Between potential
CV techniques, deep learning has been prevalent in the last
couple of years. Such an increase in interest happened mainly
due to the release of a data set containing rosette plants that
defined objective metrics to benchmark solutions. This paper
discusses an interesting aspect of the recent best-performing
works in this field: the fact that their main contribution comes
from novel data augmentation techniques, rather than model
improvements. Moreover, experiments are set to highlight the
significance of data augmentation practices for limited data
sets with narrow distributions. This paper intends to review
the ingenious techniques to generate synthetic data to augment
training and display evidence of their potential importance.

Index Terms—augmentation, leaf counting, leaf segmentation,
synthetic data

I. INTRODUCTION

The field of plant phenotyping studies plants characteristics
that resulted from their interaction with the environment [1].
The analysis of phenotypic traits can play a role in the
advancement of plant science and the aspects of breeding
and crop management. However, making the measurements
necessary to perform a thorough analysis of the plant traits
can be demanding and invasive. Such measurements were
traditionally manually made, which results in low throughput
and limits a comprehensive study of the plants’ character-
istics [2]. This inability is represented by term coined as
phenotyping bottleneck [3] used to translate the factors that
limit understanding and slow the field progress. Since image
acquisition has become more accessible and processing power
has experienced tremendous growth, a new bottleneck given by
the lack of algorithms to analyse all the plant data effectively
has been formed [4].

Since computer vision (CV) represents one of the most
accessible and less invasive approaches for plant phenotyping,
it has drastically increased in popularity in the field [5]. In the

past five years, in particular, the application of deep learning
in this field has become ubiquitous as in many others sub-
field of computer vision. Tasks such as disease detection
and plant-part segmentation, which was previously done by
heuristics or hand-engineered feature extraction and symbolic
machine learning, are now being mainly done in an end-to-
end fashion with deep neural nets [6]. Nevertheless, although
much of the current computer vision implementations show
impressive results, the application of deep learning for plant
phenotyping is still limited by the lack of large, public,
labelled data sets and community agreed benchmarks. Such
a scenario makes it difficult for comparing solutions from
proposing methods, either for working with different data sets
or evaluating performance with different metrics.

Mobilised by the deficiency of data and benchmarks, re-
searchers decided to organise and distribute a well-annotated
data set of Arabidopsis and tobacco plant images, due to their
prevalent use in the field [7]. When releasing the data set, the
authors not only gave the annotated segmentation masks of
the plants and individual leaves but also benchmark problems
for proposing works using their data. The set of problems
includes plant detection and localisation, plant segmentation,
leaf detection, segmentation, counting, tracking, and boundary
estimation. The authors later organised the ‘Leaf Segmentation
Challenge’ (LSC) at the Computer Vision Problems in Plant
Phenotyping (CVPPP 2014) workshop, which resulted in many
exciting solutions for the task of multi-instance segmentation
of leaves [8]. The main benchmark metrics that the authors
proposed, and now commonly used in works using such data,
is the Symmetric Best Dice (SBD) and Difference in Count
(DiC). The former is a mask-to-ground truth metric, which
shares similarities with the intersection over union metric. The
latter is an error measure in the leaf counting given by the
difference of the number of predicted and real leaf instances.
Some examples of the images of the CVPPP data set are
illustrated in Fig. 1.

With an objective benchmark and data set released, there
are growing research interest interest in the task of leaf
segmentation and counting. Some suggested novel approaches,



(a) Examples of images of the
CVPPP dataset.

(b) Examples of possible labels.

Fig. 1: Examples of plant images in the CVPPPP dataset.
Adapted from [7].

like the use of fully convolutional networks for plant seg-
mentation and recurrent networks for leaf counting [9]. More
intricate pipelines in a similar approach soon followed through
different authors [10]. Others used CNNs as features extrac-
tors while performing counting by regression in later fine-
tuned layers [11]. However, mostly all the works reporting
to recently surpass benchmarks on the LSC and LCC (leaf
counting challenge) did it through novel ways to augment
the CVPPP data. The implementation mostly comes from
generating synthetic data that can be added to training, as an
attempt to increase the model’s ability to generalise. There
are, nevertheless, many ways to generate such data, which
can significantly vary in complexity. An example of a more
straightforward approach is cutting instances of the leaves and
pasting them into similar backgrounds like the ones in the
training data [12]. More complicated methods contemplate
intricate pipelines for plant 3D modelling with the subsequent
rendering of 2D images of plants in the same view as the
training data [13]. Although higher complexity does not equate
to higher performance, the latter example [13] tops the current
leaf segmentation benchmark in the CVPPP data set regarding
works that propose a novel data augmentation as their primary
contribution.

This paper has the goal of presenting and discussing these
innovative and ingenious strategies for data augmentation
while also showing some evidence of their significance in plant
phenotyping. The methods discussed here were all presented
in the past 3-4 years. Their main merits were thoroughly
discussed in three modelling classifications: cut and paste,
graphical modelling, and generative networks. To highlight
the importance of data augmentation practices, the experiments
were set to include training and evaluating pre-trained, fine-
tuned models on specific CVPPP data set splits with different
augmentation strategies. The relative performance can be used
to discuss some data characteristics and exemplify overfitting
and the importance of regularisation when the data are limited.
Although it is certainly desirable to compare all the strategies
discussed here, very few works follow the practice of making
their data available. The one synthetic data set from previous

authors employed in the experiments is, nevertheless, a strong
candidate to translate such concepts, as it resulted in a top-
ranking performance model. Therefore, the contribution of
this paper is two-fold: to inform the reader on novel data
augmentation practices proposed in recent years and to provide
evidence of their potential importance in plant phenotyping
tasks of limited ground truth data. The authors hope that such
discussion will inform readers working on similar problems
and highlight potential gaps deserving of further research.

II. AUGMENTATION TECHNIQUES

A. Cut and paste methods

The technique presented by [14], called cut, paste and
learn, is a simple but yet effective data augmentation method.
As the name suggests, its application relies on automatically
cutting instances of objects and pasting them into random
backgrounds as a method to synthesise data. These images
are then used to augment the training data and improve
performance. The main advantage is that it is a rapid and
automatic way to generate data for the tasks of instance
detection and segmentation as the generator knows the position
and mask of the created object. The authors in [14] showed that
a model trained on a combination of real and synthetic data
from the GMU Kitchen Dataset [15] resulted in a performance
gain of approximately 3% in mAP values. Perhaps even
more impressive, the technique showed significant results in a
domain adaptation approach where the GMU Kitchen Dataset
was used for training, and the Active Vision Dataset [16] was
used for testing. By combining the synthesised dataset with
just 10% of the real data, the model performed better than
when using all the real but no synthetic data.

The idea of ‘cut and paste’ was replicated and did generalise
for leaf segmentation tasks in plant phenotyping. A recent
work [12] applied it for increasing performance on the task
of segmenting and counting rosette plants. The application of
the technique consists in the segmentation of non-occluded
leaves to create synthetic data from two different datasets: (i)
mature avocado and banana plantlets (80 images), and (ii) the
CVPPP dataset. Examples of data generated from both of these
data sets are illustrated in Fig. 2. The authors of the paper
established two main methods for generating synthetic data:
naive and structured collage. The naive approach was used in
the avocado data set, and it comprised random collages of 10
to 40 segmented leaves in backgrounds similar to their real
environment. To surpass benchmarks on the LSC, however, a
more intricate approach was needed. Such a method comprised
heuristics to mimic the leaves positions on the CVPPP data set,
which was needed due to the images’ particular characteristics:
shot from the top, similar backgrounds (plant pots), and leaves
emerging from the centre. The heuristics are composed of
parameters that generate plant images with a different number
of leaves, rotation angle, and size. The authors allegedly
surpassed the benchmark at the LSC by using a pre-trained
version of Mask RCNN [17] fine-tuned to their augmented
data set of synthetic images.



(a) Naive collage. (b) Structured collage.

Fig. 2: Examples of the images in the two data sets generated
by cut and paste methods in [12] and their respective methods.

(a) Rice. (b) Wheat. (c) Oat.

Fig. 3: Examples of the synthetic images of seeds from
different species generated by the method presented in [18].

The replication of this technique in agricultural phenotyping
has also been attested in crop seed segmentation. Presented in
[18], the cut and paste technique showed to be useful and
to generalise to many types of seeds in segmentation tasks.
The synthetic dataset was created by randomly rotating and
pasting seed instances into background extracted from the real
images. The methodology, initially set up for barley seeds, also
performed well when applied to rice, wheat, oat, and lettuce
seeds. Fig. 3 shows examples of the technique when applied
to these three different crops. Although the performance
comparison between training on real and synthetic was not
investigated, the authors showed that models trained only on
synthetic data resulted in AP50 values of 0.95 when averaged
over many data sets. The high-throughput automatic analysis
of seeds is crucial since it has been shown that their shape
and sizes are essential predictors of quality and yield of crops
[19].

B. Graphical modelling

The idea of graphically modelling plants is not recent, but
using it to augment data in computer vision tasks has been
recently explored due to the current developments in deep
learning and computing power. Original mathematical models,
known as Lindenmayer systems (L-systems), date back to the
60s [20] where the main focus was to represent plant topology.
Graphical rendering of such models came much later [21], as
well as their much recent application to augment data [22].
Arguably, one of the main advantages of such an augmentation
approach is that many different phenotypes can be modelled
and simulated. That ability could increase its potential for

(a) (b)

Fig. 4: Example of generated images by the L-systems-based
technique presented in [22].

generalising, especially if the models are able to represent the
distribution of real plants more precisely.

The authors of a recent paper [22] went as far as stating that
the real and synthetic data could be interchangeably used to
train deep learning models in the task of leaf counting. Their
method modelled rosettes of Arabidopsis using an L-systems-
based plant simulator software fitted with probabilistic curves
from different phenotypic traits. As seen in the examples
illustrated in Fig. 4, this implementation did not generate
images with a defined background. The presented evidence
of generalisation came from leveraging the fact that the data
set had two splits of Arabidopsis (CVPPP) from different
years, representing two distinct distributions. The absolute leaf
count difference when one of them is used for training, while
the other is used for testing, is reduced if the synthetic data
are considered in training. The authors also showed that a
model trained with synthetic images-only did generalise to a
reasonable level when testing on real images.

The authors in [23] also showed that the idea of graphically
modelling plants could be effective at augmenting the training
of models for the task of leaf segmentation. They allegedly
surpassed the benchmark, reaching an SBD score of 90% on
the A1 CVPPP data set. In their work, the method used to
generate plant images follows a leaf-by-leaf approach. The
modelled leaves were arranged circularly, arising from the cen-
tre of the pot, and had dimensions scaled independently along
each axis. Each leaf came from applying random deformations
and textures to an inspiration 3D leaf model. The position and
rotation parameters were sampled from a uniform distribution
for each leaf instance. The images were rendered from the
top angle, as in the CVPPP images. In achieving their best
result, 10,000 synthetic images were used to augment training,
which was performed by fine-tuning a Mask RCNN model
pre-trained on the COCO data set [24]. The authors reported
performance improvements of up to 20% in one of the dataset
splits, but there was no improvement in one of the rest five
data set splits. Such split is composed of young tobacco plants,
differing from the Arabidopsis plants that the method tried to
model.

On a more recent work [13], the same authors raised the
bar for graphical modelling with a bold aim: bridging the
species gap in plant phenotyping. As plant species greatly




